

The DNSC08 ocean-wide altimetry derived gravity anomaly field

Ole B. Andersen, P. Knudsen (DTU-SPACE), P. Berry (EAPRS lab., De Montford, UK) S. Kenyon (NGA)

Free Air Gravity Anomalies from Satellite Altimetry

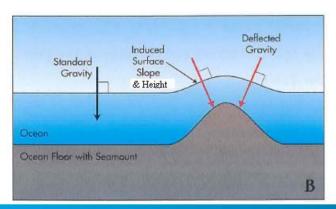
Outline

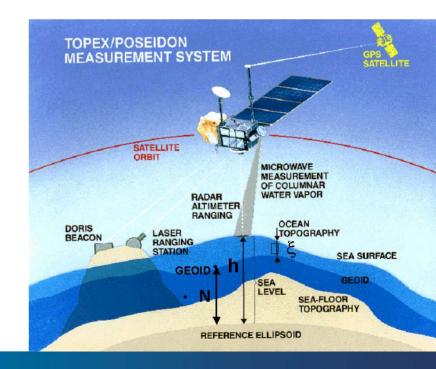
- Global Altimetric gravity from sea surface height.
- EAPRS Double retracking improvement in coastal+polar regions.
- ICESAT Improvement in high-latitude ice-covered Polar regions.
- Using PGM2007B improvement of high frequency gravity signal
- Adding Mean Dynamic Topography. improvement in current regions

DNSC08 is an update of DNSC07 using EGM2008 as reference. This also means that EGM2008 augments the marine gravity field on land.

Examples of Improvements

- The Gulf Stream
- Florida Keys


Gravity from Sea surface heights


DNSC08 Features

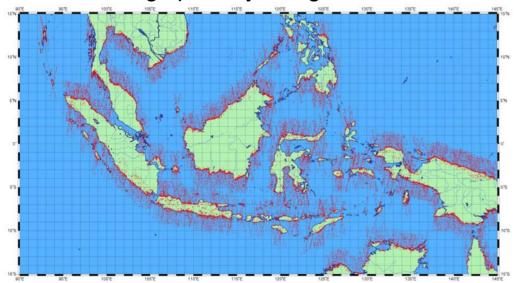
- Truly global marine gravity field (90°S-90°N)
- 1-2 km resolution grid (1 minute = 1/60 °)
- Based on Satellite altimetry: Retracked (ERS-1 GM + GEOSAT GM), ICESAT, Topex/Poseidon, JASON-1, ERS-2, GFO ERM

h = N_{REF} +
$$\Delta$$
N + MDT + n
$$\downarrow$$

$$\Delta g = -\gamma \frac{\partial N}{\partial r} - 2\gamma \frac{N}{r}$$

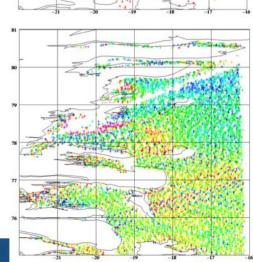
Double Waveform retracking (ERS-1 GM)

First Retrack: Gain more data and better spatial coverage


Second Retrack: Enhancing SSH estimation (ocean WF)

First Retracking:

Using EAPRS rule-based Expert System:


Identify 12 different waveform type (ocean, ice, patch, specular..)

Retrack using specially designed retrackers.

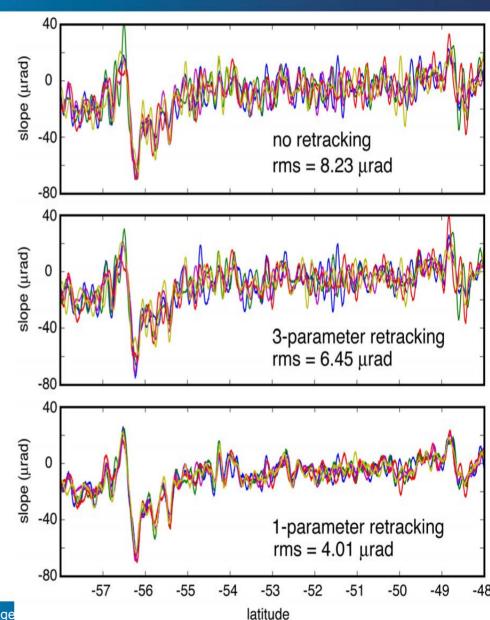
ESA RADS

EAPRS

Globally: 9% gain but focused on Polar and Near Shore regions.

Second-retracking (All Ocean WF data)

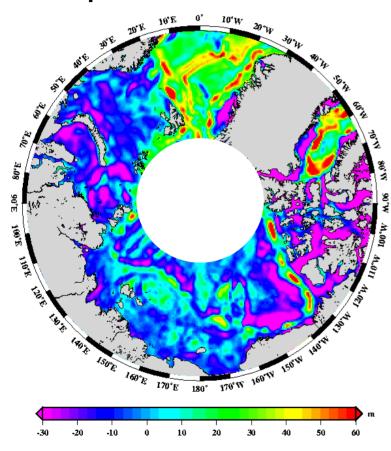
Second EAPRS Retracking


Decoupling SSH and SWH estimation:

- 1) Retrack using 3 par. Brown model
- 2) Smoothing SWH along track
- 3) Retrack using 1 par. (fixed SWH)

All Geosat GM retracked and provided by Lillibridge, Sandwell and Smith.

Example by D. Sandwell


Polar Gap: ICESAT + ArcGP

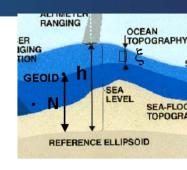
DSNC07

24.0

ICESAT laser data introduced between 80 °N and 86 °N ArcGP patched in between 86 °N and 90 °N

4.1

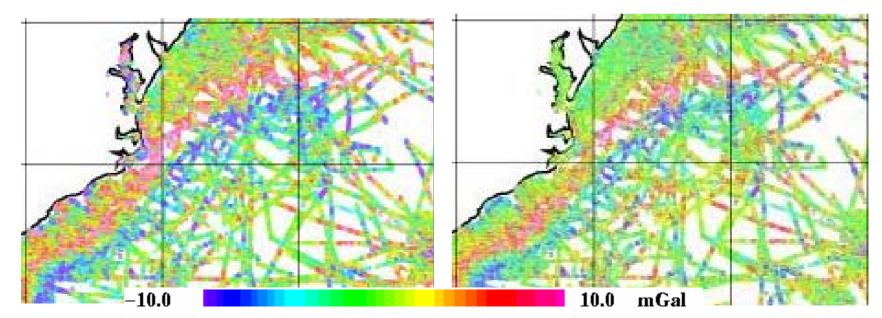
ArcGP gravity not to scale



Effect of Mean Dynamic Topography

Account for MDT in $h - N_{PGM07} = \Delta N + MDT + n$

$$\Delta g_{ALT} = -\frac{1}{\gamma} \frac{\partial h}{\partial r} = -\frac{1}{\gamma} \left(\frac{\partial N}{\partial r} + \frac{\partial MDT}{\partial r} \right)$$


+/- 300 mGal +/- 3 mGal.

DNSC08GRA Derived using consistent developed Mean Dynamic Topography DOT07A

DNSC08 – Marine Gravity

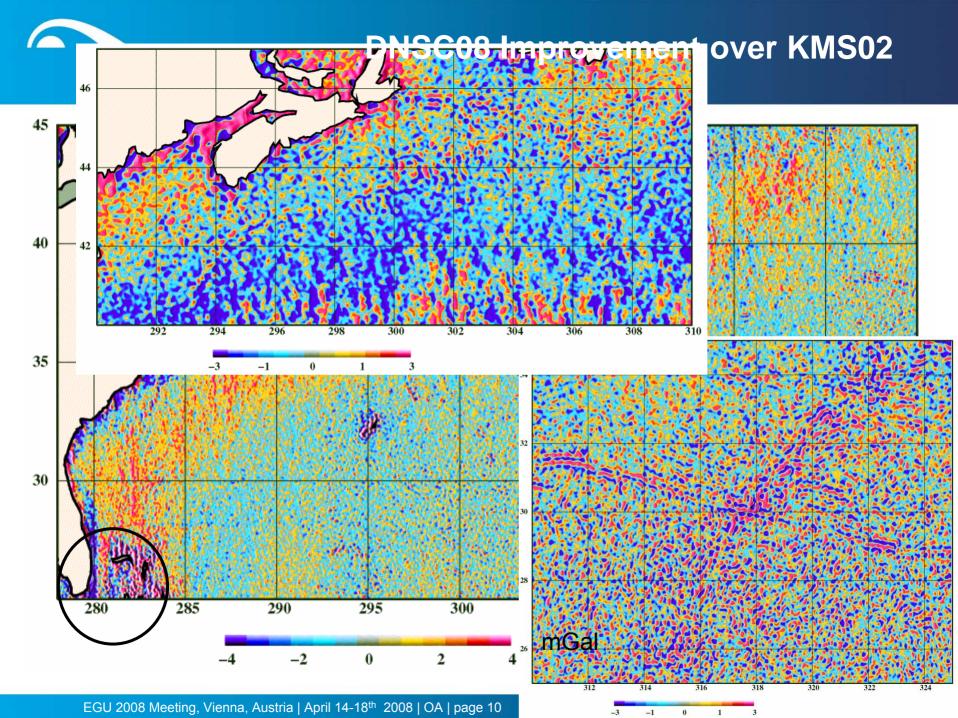
Remove/restore: PGM 2007B Geopotential model

PGM 2007B

Derived from GRACE, MSS, surface gravity+other sources. Complete to degree and order 2190 (4 times higher than EGM96)

Tscherning Rapp – Variance/Covariance Function.

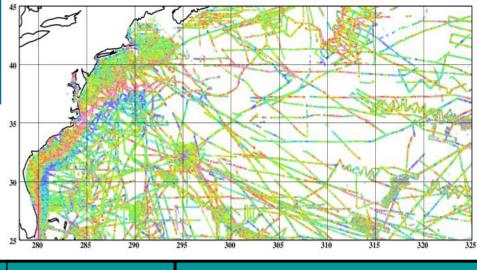
$$\sigma_{i}^{TT} = \begin{cases} \kappa_{i} & i = 2,...,360 \\ \frac{A}{(i-1)(i-2)(i+4)} \left(\frac{R_{B}^{2}}{R^{2}}\right)^{i+1} & i = 361,.... \end{cases}$$


EGM96: Remaining signal: 20-30 cm and 30-40 km correlation length PGM07B: Remaining signal: 4-5 cm and 7-10 km correlation length

Signal variance and correlation length locally fine-tuned for DNSC08.

Correlation lenght for interpolation: 18 km (KMS02) -> 7-9 km (DNSC08):

$$c(r) = C_0(1 + \frac{r}{\alpha})e^{(-r/\alpha)} + D_0(1 + \frac{r}{\beta})e^{(-r/\beta)}$$


-> Significantly improvement of short wavelengths

SS V16.1

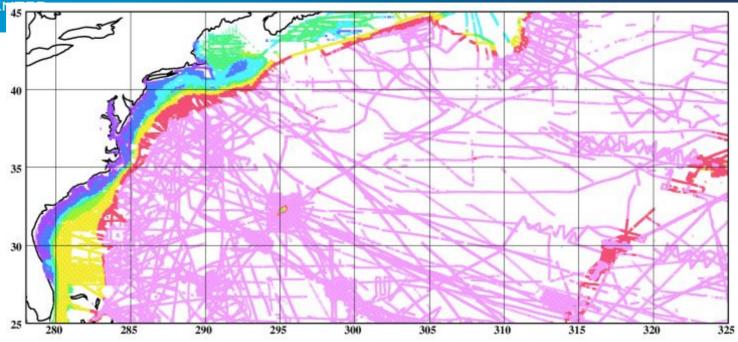
SS V 17??

Retracked ERS1+GSA

PGM 07B

History of Improvemet			25 280 285 290	295 300 305 310 315 320 325
321.400 obs	Mean	Std Dev.	Max Dev	Note
KMS99	0.60	5.69	73.74	
KMS02	0.44	5.15	49.38	
DNSC05	0.48	4.79	46.88	Retrack ERS-1, PGM04
DNSC08	0.39	4.36	36.91	Double Retrack ERS1+ PGM+ Retracked GSAT
SS V12 1	0.62	5 79	82 20	

			25 280 285 290	295 300 305 310 315 320 325
321.400 obs	Mean	Std Dev.	Max Dev	Note
KMS99	0.60	5.69	73.74	
KMS02	0.44	5.15	49.38	
DNSC05	0.48	4.79	46.88	Retrack ERS-1, PGM04
DNSC08	0.39	4.36	36.91	Double Retrack ERS1+ PGM+ Retracked GSAT
SS V12.1	0.62	5.79	82.20	
GSFC 00.1	0.68	6.14	89.91	
NTU01	0.79	6.10	92.10	

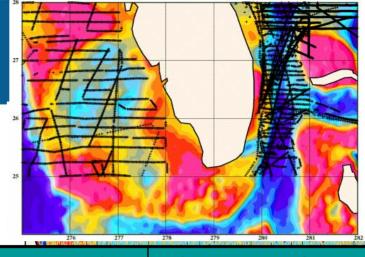

45.29

4.88

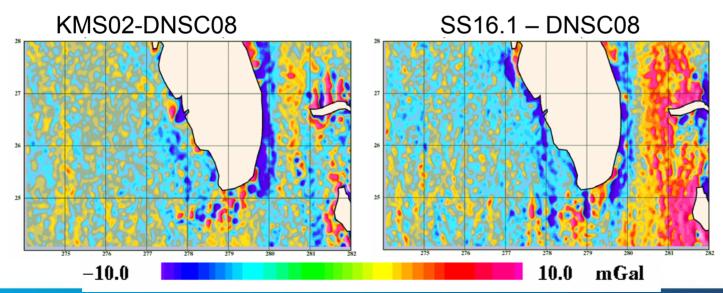
0.59

Coastal regions heavily improved

A'II > 10.000 obs	Std(KMS02)	Std(DNSC08)	Percentage Imp
Purple (0-20 m DEPTH)	6.54	3.46	48
Dark Blue (20-50 m)	4.16	3.34	20
Light Blue (50-200 m)	4.06	3.83	6
Green (200-500 m)	5.74	4.89	15
Yellow (500-1000 m)	5.36	4.38	22
Red + Pink (1000-5000 m)	5.60	4.89	13

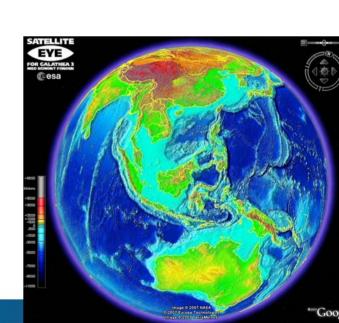


Florida Keys



Large differences between KMS02, DNSC08,SS16.1 Lots of marine Gravity

Strong currents
Steep Bathymetry


	HAT OF STREET OF THE STREET OF
10100 marine Obs	Std Dev (mGal)
KMS02	4.99
SS 16.1	5.89
DNSC08	2.78

Summary

- DNSC08
 - Resolution: 1 minute by 1 minute (2 km by 2 km)
 - True global marine gravity field (90°S to 90°N)
- Significant improvement at short scales, in polar and coastal regions
- DNSC08GRA: ftp.spacecenter.dk/pub/GRAVITY
- DNSC08 All files <u>ftp.spacecenter.dk/pub/DNSC08</u> (all files)
- DVD: Contact oa@space.dtu.dk
- Consistent Products available:
 - Altimetric (geometrical) MSS DNSC08-MSS
 - Altimetric derived Bathymetry DNSC08-BAT
 - Mean Dynamic Topography DNSC08-MDT
 - Altimetric Marine Gravity field DNSC08-GRA
 - Products also available in Google Earth

